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Abstract—In the past two decades an increasing interest in 
discovering Near Earth Objects has been noted in the 
astronomical community. Dedicated surveys have been operated 
for data acquisition and processing, resulting in the present 
discovery of over 18.000 objects that are closer than 30 million 
miles of Earth. Nevertheless, recent events have shown that there 
still are many undiscovered asteroids that can be on collision 
course to Earth. This article presents an original NEO detection 
algorithm developed in the NEARBY research object, that has 
been integrated into an automated MOPS processing pipeline 
aimed at identifying moving space objects based on the blink 
method. Proposed solution can be considered an approach of Big 
Data processing and analysis, implementing visual analytics 
techniques for rapid human data validation.  
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I.  INTRODUCTION 
According to recent research aimed at determining the size 

and orbital distribution of the population of near-Earth asteroids, 
there are about 1000 NEAs larger than 1 km, up to 
approximately 7 × 104 NEAs larger than 100m and near 4 × 108 
smaller objects that have trajectories passing by less than 30 
million miles of Earth at certain times [1], [2], [3]. Out of all 
these, in the present astronomers are tracking about 18.000 
objects: more than 8.000 larger than 140m and about 900 larger 
than 1 km [4], which means that only about 25% of possible 
hazardous asteroids (larger than 140m) are currently tracked. 

Continuous efforts are made both by professional 
astronomers and volunteers in discovering as much as possible 
of the remaining objects and on permanently monitoring the 
already known ones for better trajectory definition and more 
accurate estimations on potential hazardous activity. Some of 
the main challenges are related with limited observation time 
(large areas to scan only in dark nights with clear sky), 
technological capabilities (data acquisition equipment 
limitations), available processing time (captured images must be 
analyzed quickly in order to allow follow-up monitoring in the 
same night or, the latest, in the following night). 

Addressing these problems, a few dedicated surveys for 
NEA discovery have been organized in the past two decades, 
which benefit from telescope time, large CCD cameras, 
specialized IT infrastructure and software for automated data 
processing. These efforts have significantly increased the 
number of discovered artefacts and the percentage of followed 
space objects. 

However, observation time and technical limitations prevent 
a continuous monitoring of the entire sky. Usually, the 
observation patterns of these surveys are programmed to revisit 
each section once or twice a month. Complementary observing 
efforts are made by individual researchers and groups of 
volunteers, that are using limited telescope time (typically a few 
hours each night for two to four nights) and smaller telescopes 
to conduct surveys. One of the biggest challenges these 
initiatives are facing is data analysis in shortest time possible. 

Automated data processing techniques available in the 
dedicated surveys are usually proprietary implementations and 
have been specifically developed for the instruments available 
in the survey itself. Consequently, teams of enthusiasts and 
external researchers do not have access to these processing 
pipelines and need to use different tools for identifying NEAs. 
The most common technique is “blinking”, invented by 
physicist Carl Pulfrich at Carl Zeiss AG in 1904 [5]. This 
technique relies on multiple astronomical images of the same 
sky area, captured a few minutes apart. After instrumental errors 
are removed and optical corrections are applied the images are 
aligned “on top of each-other” using stars as a reference. By 
switching rapidly from one image to another, the human 
observer can notice that stars are remaining stationary (as the 
images have been aligned based in their position) while moving 
objects are changing position. 

The “Blinking” analysis method performed manually is not 
efficient when analyzing large captured images (e.g. 32 CCDs / 
image) or a large number of zones. As an automated approach, 
the NEARBY platform [6] proposes a MOPS pipeline that 
applies all corrections to images, extracts all sources and 
identifies potentially moving objects. As a last step, a human 
operator validates findings and eliminates any false positives. 
This article is focused on the moving objects detection 



algorithm, and discusses main challenges faces in analyzing data 
and reducing the number of false positives. 

This paper is structured as follows: the following section will 
shortly analyze other initiatives in automated NEAs discovery. 
In section III we will present an overview of the NEARBY 
platform while in sections IV, V and VI we will concentrate on 
the moving objects detection algorithm itself, obtained results 
and identified limitations. Chapter VI will present conclusions 
of this paper. 

II. RELATED WORKS 
One of the first automated algorithms for asteroids detection 

has been created in 1992 for the 0.9m Spacewatch telescope 
from the University of Arizona [7]. Using the automated 
asteroids detection algorithm, the survey has successfully 
identified 14 asteroids in the first 10 months. 

In article [8] a highly automated moving object detection 
software package is presented. Proposed approach maintains 
high detections efficiency while reducing low false-detection 
rates by using two independent detection algorithms and 
combining the results. One of the algorithms is based on a 
wavelet transformation and detections in image space while the 
other aims to identify moving objects in a similar manner with 
our approach: analyzing SEXTRACTOR output and 
recognizing possible trajectories. 

One of the most advanced software package that produces 
automatic asteroid discoveries and identifications from catalogs 
of transient detections has been developed for the Pan-STARRS 
survey under the name of Moving Object Processing System 
(MOPS) [9]. MOPS achieves >99:5% efficiency in producing 
orbits from a synthetic but realistic population of asteroids 
whose measurements were simulated for a Pan-STARRS4- class 
telescope. 

In article [10], Copandean et al. propose an automated 
pipeline prototype for asteroids detection, written in Python 
under Linux. For images preprocessing and correction, 3rd party 
astrophysics libraries have been used, while for asteroids 
detection a custom approach based on SEXTRACTOR output 
has been implemented. The main steps of the algorithm were 
focused on: (1) eliminating stars and galaxies based on 
combined catalogs generated also by SEXTRACTOR; (2) 
process all remaining objects grouped by their acquisition image 
and ordered by astronomical seeing conditions; (3) identify 
trajectories based on the deviation angle between the pivot 
element (taken from the clearest image) and all potential 
candidates from different images. 

Although used in renowned surveys with great results and 
proven efficiency, most of the solutions above are proprietary 
and details about their implementation is not accessible.  Our 
aim is to provide an open-source asteroids detection algorithm 
that can be easily adapted to different observing instruments (i.e. 
telescopes) and allows large data sets analysis in almost real-
time, in an automated manner and with minimum intervention 
from human observers. 

III. NEARBY PLATFORM OVERVIEW 
As already mentioned, the use of “blinking” method by hand 

is feasible only for smaller images and shorter surveys (where 
images are captured only from a few sky areas at a time). For 
any survey that uses high resolution CCDs and aims to cover 
extended sky areas over multiple nights, an automated 
processing pipeline is required. As most of the current 
automated solutions have been developed specifically for the 
instruments available in each large survey and are usually 
proprietary software, NEARBY platform constitutes an 
accessible solution for individual astronomers and groups of 
volunteers that would like to analyze large amounts 
astronomical images in almost real-time. 

NEARBY platform’s pipeline has been inspired from the 
Moving Object Processing System (MOPS) used in the Pan-
STARRS system. As depicted in Fig. 1, the pipeline accepts raw 
astronomical images as input and performs all the required 
corrections and instrumental noise elimination before running 
the Asteroids detection algorithm. The output of this pipeline is 
a list of potential asteroids that are presented to a human 
validator for false positives elimination. 

 

 
Fig. 1. MOPS modules 

NEARBY pipeline has been implemented using Python and 
the following third-party libraries: 

• IRAF [11] - a collection of software packages 
developed by the National Optical Astronomy 
Observatory (NOAO) aimed to process astronomical 
images. This library is mainly used for images headers 
editing, formats conversion (e.g. between FITS and 
PNG), image cropping. 

• SEXTRACTOR [12] – process images and extract and 
build a catalog of astronomical objects 

• SCAMP [13] – compute shifting function used to 
correct field distortion 

• SWARP [14] – resample images based on the shifting 
functions 

 



Ideally, captured images of the same sky area should be 
perfectly aligned, the telescope positioning being computed as 
to compensate for Earth rotation in between two consecutive 
takes (from a few minutes to few hours). However, in reality this 
is not the case and he correction and processing pipeline needs 
to take this into consideration. As a result, when the Field 
correction module finishes execution, all the images inserted 
into the pipeline have been corrected, resampled and realigned 
according to the requirements of the “blinking” technique: in all 
images, stars have the same RA and DEC coordinates, so they 
appear as stationary for the entire time interval from the first to 
the last image. In opposition, any asteroid should be represented 
as an object that changes position in consecutive images. 

IV. ASTEROIDS DETECTION ALGORITHM 
After the input images have been corrected and 

synchronized, SEXTRACTOR module is used to extract all 
astronomical objects from the images, being stars, noise or 
asteroids. The output of this phase is a catalog in ASCII format 
for each input image, that includes specific information about 
the identified sources: position in RA and DEC coordinates, 
apparent magnitude, elliptical form etc. The only link between 
the identified objects is represented by the image they have been 
found in. No other contextual information (e.g. relative 
positioning in catalog, type of source – star, galaxy, asteroid …) 
is provided.  

Obtained SEXTRACTOR catalogs are then processed by the 
NEARBY Asteroids Detection Algorithm which has as main 
purpose to identify asteroids trajectories from the elements 
detected by SEXTRACTOR in the processed images. As input 
the algorithm receives four types of information: 

1. list of all sources identified by SEXTRACTOR (in the 
form of the aforementioned catalogs); 

2. the exact observation time of each image (in Julian Date 
format); 

3. the exposure time for each image (typically 60 seconds); 

4. parameters that describe specific attributes for the 
survey and the asteroids of interest: 

o pixel scale – the number of arc minutes covered 
by each pixel in the image; 

o minimum and maximum speed (µmin , µmax) – the 
speed limits measured in arc seconds / minute for 
the moving objects of interest; This value should 
be coordinated with the survey direction and with 
the time interval between two consecutive images; 

o maximum allowed speed variation (Δµmax) – the 
maximum variation that is accepted between 
different parts of the same trajectory (influenced 
by velocity and positioning error); 

o maximum allowed positioning error (εmax) – the 
minimum distance between two objects in order to 
be considered separate entities. 

As output, the algorithm generates identified trajectories in 
MPC [15] format and required image-space coordinates for 
creating thumbnails of the NEAs candidates. 

Our approach assumes that an asteroid, during the entire 
observation window (from the first to the last image), moves 
with constant speed and on a trajectory that is perceived as being 
linear. Searching through all the sources identified by 
SEXTRATOR, the detection algorithm organizes them into 
potential trajectories. The main challenge of this approach is 
generated by the fact that sources positioning has an error of 0.7 
arc seconds, which is often comparable with the distance 
traveled by the asteroid between two consecutive images. For 
some cases, this enforces relaxations of the speed and trajectory 
angle computations which, in turn, favors the false positives. 

The main algorithm steps are as follows: 

A. Remove fixed objects 
In order to reduce the number of elements that can generate 

false positives, the first step of the algorithm concentrates on 
eliminating all sources that are fixed in time according to the RA 
and DEC coordinates. Most likely these represent stars or 
galaxies and should not be considered when looking for 
asteroids trajectories. Are considered to be fixed all the sources 
that are positioned at a distance shorter than the maximum 
allowed positioning error value in two or more images, no 
matter if they are consecutive or not. 

For specific cases, where asteroids are moving very slowly 
and the time interval between images is short in comparison, the 
condition should be modified to consider as static sources only 
the detections that are positioned at a distance shorter than the 
maximum allowed positioning error value in all images. 

B. Establish speed intervals 
NEAs velocity can vary significantly, typically from values 

of 0.05 to 10 arc seconds / minute. In many of the tested 
astronomical images, this large variation favors the detection of 
multiple trajectories for the same source, thus creating many 
potential false positives trajectories, especially in the 
initialization phase. To overcome this problem, we have adopted 
a speed interval partitioning approach that automatically splits 
the interval defined by the minimum and maximum speed values 
specified as parameters in 0.5 arc seconds / minute intervals. 

For each of these intervals, we are running the discovery 
algorithms and try to identify all moving objects that meet 
current velocity conditions. All the sources that have been 
included into trajectories will not be considered for the next 
computation phases, thus reducing the number of false positives 
and the possibility to consider the same object for multiple 
trajectories. 

C. Initialize possible trajectories 
In the third step of the algorithm, all sources are ordered 

according to the acquisition time and the clearest position is 
chosen as a pivot (i.e. starting point). The pivot is selected based 
on the astronomical seeing conditions (FWHM) [16] which is 
one of the parameters retrieved from SEXTRACTOR catalogs. 
This ensures that the number of possible detections is 
maximized, as the chances for the asteroids being visible in this 
image are the highest. 



Each of the sources from the pivot image are then paired with 
all the sources from the previous (or the following) 
chronological image, keeping for later processing only the pairs 
that: 

• do not have any common positions with other pairs: this 
condition allows us to eliminate many false positives 
from the start, as two or more real and independent 
trajectories, with similar velocities, are extremely rare 
close enough to share one or more sources; 

• by the computed traveled distance indicate a speed that 
is within the current speed interval. 

In this step we have very few information that can be used to 
filter out false positive pairs. Any two objects from the pivot and 
another image that meet the velocity conditions are a very good 
candidate for an initial trajectory. 

D. Trajectories development 
After all the initial trajectories have been created, each of the 

remaining images are processed in chronological order. From 
each image a maximum of one new source will be added to each 
trajectory, selected as being the one that has the minimum 
direction angle deviation and minimum speed variation 
compared to the already existing elements in trajectory. Because 
of the positioning errors mentioned above (0.7 arc seconds), 
these conditions cannot be very restrictive, facilitating high 
numbers of false positives, especially for trajectories composed 
of only three sources. 

In order to select the best match between each trajectory and 
each of the available object in the current processed image, a 
cost function is computed: 

𝑓 = 0.5 ∗ 1 −	
𝜇+ − 	𝜇,
∆𝜇./0

+ 0.5 ∗ 	 1 − 	
𝛼+ − 	𝛼,
∆𝛼./0

 

where: 

𝜇+ – the average speed on the existing trajectory segments; 

𝜇, – the speed computed on the candidate segment for this 
trajectory, if the current object would be selected for 
inclusion in the trajectory; 

∆𝜇./0 – the value of the parameter maximum allowed 
speed variation; 

𝛼+ – the average angle between the existing trajectory 
segments and the chosen reference; 

𝛼, – the angle of the candidate segment for this trajectory, if 
the current object would be selected for inclusion in the 
trajectory 

∆𝛼./0 – the maximum deviation angle accepted when 
searching for candidates, computed dynamically as: 

 

∆𝛼./0 = 	 sin67
2 ∗ 	𝜀./0

𝐿+
 

where: 

𝜀./0 – the value of the parameter maximum allowed 
positioning error; 

𝐿+ – the length of the already defined trajectory; 

 

As can be seen from the definition of ∆𝛼./0, it is assumed 
that the distance traveled by the asteroid between two 
consecutive image captures is larger than the double of the 
maximum allowed positioning error value. 

V. TESTING RESULTS 
As preliminary testing, the algorithm has been run on 16 sets 

of images captured with the 2.54m INT telescope from La 
Palma, Spain, which has 4 thinned EEV 2kx4k CCDs and covers 
a sky area of 34.2 arc minutes. The automated results have been 
compared to the results obtained by human observers, with the 
following outcome: 

TABLE I.  PRELIMINARY TESTING RESULTS 

Field NEAs found 
by observer 

Validated 
detections Success rate 

Field 1 39 32 82% 

Field 2 33 24 73% 

Field 3 37 26 70% 

Field 4 33 26 79% 

Field 5 28 25 89% 

Field 6 24 21 88% 

Field 7 25 23 92% 

Field 8 33 28 85% 

Field 9 36 25 69% 

Field 10 24 18 75% 

Field 11 28 24 86% 

Field 12 28 22 79% 

Field 13 25 19 76% 

Field 14 32 27 84% 

Field 15 21 18 86% 

Field 16 33 28 85% 
 

As it can be seen in Table 1, the success rate of the proposed 
algorithm is promising. It is important to underline the fact that 
these results have been obtained only based on the 
SEXTRACTOR output and making use of position coordinates 
only (RA and DEC). No metadata information like position of 
stars and galaxies or list of known asteroids that should cross 
through the analyzed field at the observation time are currently 
used. All the detections rely solely on the captured images. 



VI. CURRENT LIMITATIONS OF THE ALGORITHM 
As already mentioned, the asteroids detection algorithm 

relies on the objects extracted from images by the 
SEXTRACTOR library. As the performed analysis is based 
solely on the images, some of the reported objects are erroneous 
and favor the detection of false positives. 

For example, in Figure 2 we can see an object, which is 
actually a star, crossing a bad-pixel area of the telescope’s CCD. 
The three images are presented chronologically from left to right 
and give a false impression of a moving object (taking the bad-
pixel lines as a reference). At the same time, as the size of the 
object is changing with time, SEXTRACTOR analysis of the 
image will report two objects for a), one object at a specific 
position for b) and one object, with a slightly different position 
than the one from b) for c). 

 
Fig. 2. MOPS modules 

Due to these positioning errors, reported objects have been 
considered as a valid trajectory by the asteroids detection 
algorithm. This type of errors can be relatively easily avoided if 
more information is added into the algorithm, like stars 
positioning. 

VII. CONCLUSIONS 
The automated analysis of astronomical images reduces 

significantly the time and human resources necessary for NEAs 
discovery and continuous monitoring. Large datasets can be 
processed in almost real-time and actions for follow-up on new 
discoveries or on confirmation of already known asteroids can 
be taken promptly. However, most of the current automated 
astronomical images processing solutions are proprietary or 
have been developed for specific instruments, so they are no 
suitable to be used by individual astronomers from other 
observatories or by volunteers and astronomy enthusiasts. 

The work presented in this article aims to provide an open-
source asteroids detection algorithm that can be easily adapted 
to different observing instruments (i.e. telescopes) and allows 
large data sets analysis in almost real-time, in an automated 
manner and with minimum intervention from human observers. 
Results obtained so far are promising and current 
implementation has been successfully integrated in the 
processing pipeline of the NEARBY Platform. 
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